Critical Review Form Diagnostic Test

A Prospective Comparison of Supine Chest Radiography and Bedside Ultrasound for the Diagnosis of Traumatic Pneumothorax, *Acad Emerg Med* 2005; 12: 844-849

Objective: "To compare the sensitivity and specificity of bedside ED US with those for supine portable AP chest radiography and CT for the detection of a pneumothorax in trauma patients, and to evaluate whether US can distinguish between small (10% or less), medium (11% to 40%), and large (over 40%) pneumothoraxes." (p 845)

Methods:

Prospective double-blinded convenience sampling of Medical College of Georgia ED blunt trauma patients presenting from Sept 2003 to May 2004 who received a CT abdomen (not chest) during clinical shifts of five specific EM attendings, each of whom had performed at least 100 trauma US evaluations and ten thoracic US examinations.

A 4- to 2- MHz transducer (same as FAST exam) was placed at four locations on each hemithorax (anterior second intercostal space (ICS) at the mid-clavicular line, fourth ICS at the anterior axillary line, sixth ICS at the mid-axillary line, and sixth ICS at the posterior axillary line). The absence of sliding lung sign ruled in pneumothorax and was confirmed by either a CT abdomen (with lung windows) for a CT-chest or rush of air by inserting a chest tube. Loss of the sliding lung sign at the second ICS defined a small PTX; the mid-axillary line a medium PTX; and the posterior axillary line a large PTX. EM physicians were blinded to the CXR and CT results until data acquisition forms were completed. Radiologists were blinded to the US results.

I.	Are the results valid?	
Α.	Did clinicians face diagnostic uncertainty?	Yes, "the US physician was blinded to
		the chest radiography and CT results
		until data collection was completed".
		(p 846)
В.	Was there a blind comparison with an	Yes, "Radiologists were blinded to
	independent gold standard applied similarly	US results." (p 846)
	to the treatment group and to the control	
	group?	
	(Confirmation Bias)	
C.	Did the results of the test being evaluated	Possibly, since CT examination "was
	influence the decision to perform the gold	obtained at the discretion of the
	standard?	treating physician." (p 845) However,
		the authors took substantial effort to
		minimize bias without irradiating
	(Ascertainment Bias)	every trauma patient.
II.	What are the results?	

A. What likelihood ratios were associated with the range of possible test results?

- 176 patients were enrolled with 43% female. No demographic, injury severity scores, or outcomes, data is provided.
- Twelve patients had a chest tube placed before CT (all had a rush of air reported). Only 21/176 had a dedicated chest CT. All the rest had CT abdomen with lung windows as the Gold standard.
- Ultrasound diagnostic test characteristics

	CT+ PTX	CT- PTX
US+ PTX	52	1
US- PTX	1	122
Sen 98%		
	Spec 99%	

Prev 30.1%

LR+ 121 (17 – 850)

LR- 0.02 (0-0.13)

• Portable CXR diagnostic test characteristics

	CT+ PTX	CT- PTX		
CXR+ PTX	40	0		
CXR- PTX	13	123		

Sen 75% Spec 100%

Prev 30.1%

 $LR+ \infty$

LR- 0.25 (0.16-0.40)

 US size estimate correlated well with CT (κ=0.79, 0.6-1.0) with 23 large, 11 medium, and 19 small PTX identified.

III.	How can I apply the results to patient	
	care?	
Α.	Will the reproducibility of the test result and	Uncertain, since no inter-rater Kappa
11.	its interpretation be satisfactory in my	reliability assessment was performed
	clinical setting?	and no inexperienced sonographers
		were included.
В.	Are the results applicable to the patients in	Uncertain, since no demographic,
	my practice?	injury severity score, or outcomes
		data is provided. Furthermore,
		recognizing the Knowledge
		Translation barrier of acceptance, one
		is uncertain whether trauma surgeons
		and/or thoracic surgeons untrained in
		US would accept EM performed US
		as a surrogate for CXR or CT.
C.	Will the results change my management	No. I am not as experienced in
	strategy?	ultrasound as these investigators, but
		for similarly trained
		ultrasonographers, this paper suggests
		a role for EM US to detect traumatic
		PTX.
D.	Will patients be better off as a result of the	Possibly, if similarly trained EM
	test?	ultrasonographers can reproducibly
		identify clinically significant occult
		(portable supine CXR undetectable)
		PTX in those not otherwise requiring
		a CT. Doing so would allow high-risk
		individuals to receive a chest tube or
		be closely monitored (serial US?) for
		expanding PTX and resulting
		complications. US could thus prevent
		dangerous hospital transfers or repeat
		doses of ionizing radiation.
		Furthermore, portable US equipment
		can supplant heavier, impractical
		radiography equipment in war zones
		or space missions.

Limitations:

- 1. Ultrasound experience of these research physicians limit one's ability to generalize results to most EM physicians who lack similar training.
- 2. Inclusion of only patients who were to undergo CT at the scanning physicians' discretion leaves open the possibility of selection bias and ascertainment bias.
- 3. Uncertain whether CT abdomen lung windows included apex to base of lung. If not, may have missed small apical PTX.
- 4. Authors did not measure comet-tail sign of PTX which may have increased sensitivity.

Bottom Line:

Single-center ED based study suggesting experienced EM ultrasonographers using an 8-window view can identify occult PTX in blunt trauma patients better than supine portable CXR. Future researchers should ascertain the diagnostic test characteristics of EM-performed US by physicians with less experience and less innate curiosity regarding sonographic imaging while assessing ED length-of-stay and times to definitive therapeutic intervention and disposition decisions.