Critical Review Form Diagnostic Test

Improving the Diagnosis of Acute Heart Failure Using a Validated Prediction Model, *Journal of the American College of Cardiology* 2009; 54: 1515-1521

Objective: To analyze "NT-proBNP as a continuous variable by using data from a previously reported study of patients presenting to the ED with undifferentiated shortness of breath, deriving and externally validating a novel mathematical prediction model for diagnosing AHF and assessing this approach for appropriately redirecting the clinician's diagnostic impression". (p. 1516)

<u>Methods:</u> Model derived from previously collected, industry-sponsored trial of 534 patients presenting to 1 of 7 Canadian urban ED's with undifferentiated shortness of breath between December 2004 and December 2005 (<u>IMPROVE-CHF</u>). Exclusion criteria included AMI (elevated troponin or ST-T change ≥ 1 mV), renal failure (creatinine > 2.8 mg/dL), malignancy or clear etiology (wheezing in young healthy asthmatic).

After history and physical exam, chest x-ray and ECG, the emergency physician was asked to estimate the probability of AHF without knowledge of the NT- proBNP value.* After all subjects had been enrolled, AHF diagnosis criteria standard was adjudication by two Cardiologists using the Framingham Heart Score and NHANES I as guides. These adjudicating Cardiologists were blinded to the NT-proBNP level but had access to all other clinical data, including a 60-day follow-up telephone conversation.

* the study population was divided into low ($\leq 20\%$), intermediate (21% - 79%), or high (> 80%) pre-test probability.

The diagnostic performance characteristics of NT- proBNP were analyzed as a categorical (<300 pg/mL, $\ge300-900 \text{ pg/mL}$, and $\ge900 \text{ pg/mL}$) and as a continuous variable via the logarithmic ranges <300, $\ge300 \text{ and } <900$, $\ge900 \text{ and } <2700$, $\ge2700 \text{ and } <8100$, and ≥8100 . Investigators then fit a multiple logistic regression model using a pre-test probability combined with NT and tested the concordance index (c statistic, equivalent to the area under an ROC curve) and tested the concordance index (a-statistic equivalent to AUC for ROC) and tested to discriminatory power of the model via bootstrap method to ensure against over-fitting. Finally, the

investigators validated their model against a distinct cohort of 573 patients, from the US-based PRIDE study. Specifically, they analyzed the ability of the model by the net reclassification improvement (NRI) and the integrated discrimination improvement (IDI) which assesses appropriate re-classification of patients (for example if the test in question changes non-CHF patient from pre-test intermediate risk to post-test low risk then the test has appropriately re-classified the patient).

The algebraic model was published in an online appendix (p. 1521):

Probability AHF =
$$1 + \exp \frac{\frac{1}{(8 + 0.011 \text{ age } -5.9 \text{ pt prob} - 2.3 \text{lht bnp} + 0.82 \text{ pt prob x lnt bnp})}$$

Where

pt prob = patient's pre-test probability lnt bnp = log (to base 10) of NT- proBNP

	Guide	Comments
I.	Are the results valid?	
A.	Did clinicians face diagnostic uncertainty?	Yes. "After the chest radiograph and
		electrocardiogram were reviewed, the
		emergency physician estimated the
		probability of AHF (from 1% to 100%)
		without knowledge of the drawn NT-
		proBNP value". (p. 1516)
В.	Was there a blind comparison with an	Yes. For both the IMPROVE CHF and
	independent gold standard applied similarly	PRIDE studies adjudication for acute heart
	to the treatment group and to the control	failure was determined independently by
	group?	two cardiologists with access to all clinical
		and follow-up data except the NT- proBNP
	(Confirmation Bias)	level". (p. 1516)
C.	Did the results of the test being evaluated	No, all subjects analyzed had NT- proBNP
	influence the decision to perform the gold	Cardiology adjudication (criterion standard)
	standard?	for CHF.
	(Ascertainment Bias)	
II.	What are the results?	

A. What likelihood ratios were associated with the range of possible test results?

- 483 subjects from IMPROVE-CHF were analyzed with mean age 70-years.
- Adjudication resulted in 10 discordant cases.
- Pre-test probabilities were as follows:

Pre-test	AHF	No AHF	Total
Low	26 (16%)	137 (84%)	163 (33.7%)
Intermediate	80 (43.5%)	104 (56.5%)	184 (38.1%)
High	115 (84.6%)	21 (15.4%)	136 (28.2%)

- Overall, median NT- proBNP values were 320 pg/mL for no CHF and 3820 pg/mL for CHF, but there was significant overlap between groups. (Fig 1, p. 1517)
- NT- proBNP LR's standard cut points:

NT- proBNP	AHF	No.	AHF	LR (95% CI)
< 300	12	129	0.11	(0.06-0.19)*
300-899	14	49	0.34	(0.19 - 0.60)
\geq 900	195	84	2.75	5 (2.29-3.30)

• NT- proBNP LR's multiple cut points:

	AHF	No AHF LR (95% CI)
< 300	12	129 0.11 (0.06-0.19)*
300-899	14	49 0.34 (0.19-0.60)
900-2699	57	50 1.35 (0.97-1.89)
2700-8099	84	29 3.43 (2.34-5.03)
≥ 8100	54	5 12.80 (5.21-31.45)*

*only the < 300 or \ge 8100 pg/mL is clinically useful to substantially alter post-test probability.

- The model displayed negligible overfitting and excellent discriminatory power (C=097), but <u>did under-estimate</u> AHF probability.
- Validation of the model on the PRIDE cohort (with statistically significant differences in age, AHF probability and NT- proBNP levels) most of the reclassification occurred in the intermediate probability group, but NT-proBNP had 89% and 95% accuracy in the low and high prob groups, respectively. (Table 4, p.1519)

	1	<u></u>
		Intermediate Probability Group (N=139) Post-Test
III.	How can I apply the results to patient	7 <u>5 2012017</u> 1
	care?	
Α.	Will the reproducibility of the test result and	"Although currently not generalizable to all
	its interpretation be satisfactory in my	settings, the fact that the two study cohorts
	clinical setting?	were from different countries and so
		different (Table 3) suggests the model may
		perform well in other patient populations". (p. 1520)
В.	Are the results applicable to the patients in	Yes. ED adult patients in urban ED's with
	my practice?	undifferentiated dyspnea.
C.	Will the results change my management	Yes – will incorporate model into CHF
	strategy?	probability assessment pending
D.	Will patients be better off as a result of the	confirmatory trials (see Excel file). Uncertain Green, et al suggest that ED
D .	test?	patients with undifferentiated dyspnea and
		clinical uncertainty (intermediate
		probability) for AHF have longer hospital
		length of stay and increased mortality
		between those in whom clinical certainty is attained. Future RCT's will need to
		determine whether clinician awareness and
		interpretation of NT- proBNP/BNP results
		can positively impact these patient
		important outcomes.

Limitations

- 1) <u>Industry relationships</u> (Dr. Januzzi) mandate healthy skepticism regarding data interpretation in lieu of non-industry sponsored trial.
- 2) Complicated algebraic equation limiting <u>bedside application</u>.
- 3) Uncertain applicability to **BNP** since NT-proBNP was used.
- 4) No assessment of <u>pre-test probability</u> inter-observer variability which could significantly impact <u>model stability</u> across departments or institutions.
- 5) Cannot apply model in setting of AMI, ARF, or malignancy.

Bottom Line

A complicated algebraic model derived in the multi-center Canadian IMPROVE-CHF cohort and validated retrospectively in the U.S. PRIDE cohort improves the diagnostic accuracy for AHF in ED patients with undifferentiated dyspnea. Future studies should validate and/or refine this model while assessing mechanisms for clinical uptake, cost, and impact on patient important outcomes (length-of-stay, morbidity, mortality).